Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding urban stormwater denitrification in bioretention internal water storage zones.

Identifieur interne : 000361 ( Main/Exploration ); précédent : 000360; suivant : 000362

Understanding urban stormwater denitrification in bioretention internal water storage zones.

Auteurs : Sara Igielski [États-Unis] ; Birthe V. Kjellerup [États-Unis] ; Allen P. Davis [États-Unis]

Source :

RBID : pubmed:30682230

Descripteurs français

English descriptors

Abstract

Conventional free-draining bioretention systems promote nitrate production and continual leaching to receiving waters. In this study, laboratory tests demonstrated the efficacy of an internal water storage zone (IWSZ) to target nitrate removal via denitrification. Experimental results confirmed that the carbon substrate characteristics (Willow Oak woodchip media) and the hydraulic retention time of nitrified stormwater affected nitrate removal performance. A 2.6-day batch treatment time reduced 3.0 mg-N/L to <0.01 mg/L, corresponding to a first-order denitrification rate constant of 0.0011 min-1 . Under various flow conditions, the associated hydraulic retention time may be used as a predictive measurement of nitrate removal performance. Scanning electron microscopy and 16S rRNA analysis of the woodchips showed that biofilms were present that could be responsible for anaerobic lignocellulose degradation and denitrification. This knowledge, along with evaluation of the biofilm community composition, reinforced the notion of a heterogeneous structure due to nutrient availability and hydrodynamic conditions. PRACTITIONER POINTS: Denitrification can occur using woodchips in a bioretention internal water storage zone. The denitrification rate is slow and may be limited during field-scale applications. A woodchip pretreatment did not provide long-term enhancement to the denitrification rate. Denitrification bacteria were found in the internal water storage zone.

DOI: 10.2175/106143017X15131012188024
PubMed: 30682230


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding urban stormwater denitrification in bioretention internal water storage zones.</title>
<author>
<name sortKey="Igielski, Sara" sort="Igielski, Sara" uniqKey="Igielski S" first="Sara" last="Igielski">Sara Igielski</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kjellerup, Birthe V" sort="Kjellerup, Birthe V" uniqKey="Kjellerup B" first="Birthe V" last="Kjellerup">Birthe V. Kjellerup</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Davis, Allen P" sort="Davis, Allen P" uniqKey="Davis A" first="Allen P" last="Davis">Allen P. Davis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30682230</idno>
<idno type="pmid">30682230</idno>
<idno type="doi">10.2175/106143017X15131012188024</idno>
<idno type="wicri:Area/Main/Corpus">000538</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000538</idno>
<idno type="wicri:Area/Main/Curation">000538</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000538</idno>
<idno type="wicri:Area/Main/Exploration">000538</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding urban stormwater denitrification in bioretention internal water storage zones.</title>
<author>
<name sortKey="Igielski, Sara" sort="Igielski, Sara" uniqKey="Igielski S" first="Sara" last="Igielski">Sara Igielski</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kjellerup, Birthe V" sort="Kjellerup, Birthe V" uniqKey="Kjellerup B" first="Birthe V" last="Kjellerup">Birthe V. Kjellerup</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Davis, Allen P" sort="Davis, Allen P" uniqKey="Davis A" first="Allen P" last="Davis">Allen P. Davis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Water environment research : a research publication of the Water Environment Federation</title>
<idno type="ISSN">1061-4303</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anaerobiosis (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>Biofilms (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Cities (MeSH)</term>
<term>Denitrification (MeSH)</term>
<term>Water (chemistry)</term>
<term>Water Pollutants, Chemical (isolation & purification)</term>
<term>Water Pollutants, Chemical (metabolism)</term>
<term>Water Supply (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alimentation en eau (MeSH)</term>
<term>Anaérobiose (MeSH)</term>
<term>Biodiversité (MeSH)</term>
<term>Biofilms (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Dénitrification (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Polluants chimiques de l'eau (isolement et purification)</term>
<term>Polluants chimiques de l'eau (métabolisme)</term>
<term>Villes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Cities</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anaerobiosis</term>
<term>Biodiversity</term>
<term>Biofilms</term>
<term>Denitrification</term>
<term>Water Supply</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alimentation en eau</term>
<term>Anaérobiose</term>
<term>Biodiversité</term>
<term>Biofilms</term>
<term>Dénitrification</term>
<term>Villes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Conventional free-draining bioretention systems promote nitrate production and continual leaching to receiving waters. In this study, laboratory tests demonstrated the efficacy of an internal water storage zone (IWSZ) to target nitrate removal via denitrification. Experimental results confirmed that the carbon substrate characteristics (Willow Oak woodchip media) and the hydraulic retention time of nitrified stormwater affected nitrate removal performance. A 2.6-day batch treatment time reduced 3.0 mg-N/L to <0.01 mg/L, corresponding to a first-order denitrification rate constant of 0.0011 min
<sup>-1</sup>
. Under various flow conditions, the associated hydraulic retention time may be used as a predictive measurement of nitrate removal performance. Scanning electron microscopy and 16S rRNA analysis of the woodchips showed that biofilms were present that could be responsible for anaerobic lignocellulose degradation and denitrification. This knowledge, along with evaluation of the biofilm community composition, reinforced the notion of a heterogeneous structure due to nutrient availability and hydrodynamic conditions. PRACTITIONER POINTS: Denitrification can occur using woodchips in a bioretention internal water storage zone. The denitrification rate is slow and may be limited during field-scale applications. A woodchip pretreatment did not provide long-term enhancement to the denitrification rate. Denitrification bacteria were found in the internal water storage zone.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30682230</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1061-4303</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>91</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Water environment research : a research publication of the Water Environment Federation</Title>
<ISOAbbreviation>Water Environ Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding urban stormwater denitrification in bioretention internal water storage zones.</ArticleTitle>
<Pagination>
<MedlinePgn>32-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.2175/106143017X15131012188024</ELocationID>
<Abstract>
<AbstractText>Conventional free-draining bioretention systems promote nitrate production and continual leaching to receiving waters. In this study, laboratory tests demonstrated the efficacy of an internal water storage zone (IWSZ) to target nitrate removal via denitrification. Experimental results confirmed that the carbon substrate characteristics (Willow Oak woodchip media) and the hydraulic retention time of nitrified stormwater affected nitrate removal performance. A 2.6-day batch treatment time reduced 3.0 mg-N/L to <0.01 mg/L, corresponding to a first-order denitrification rate constant of 0.0011 min
<sup>-1</sup>
. Under various flow conditions, the associated hydraulic retention time may be used as a predictive measurement of nitrate removal performance. Scanning electron microscopy and 16S rRNA analysis of the woodchips showed that biofilms were present that could be responsible for anaerobic lignocellulose degradation and denitrification. This knowledge, along with evaluation of the biofilm community composition, reinforced the notion of a heterogeneous structure due to nutrient availability and hydrodynamic conditions. PRACTITIONER POINTS: Denitrification can occur using woodchips in a bioretention internal water storage zone. The denitrification rate is slow and may be limited during field-scale applications. A woodchip pretreatment did not provide long-term enhancement to the denitrification rate. Denitrification bacteria were found in the internal water storage zone.</AbstractText>
<CopyrightInformation>© 2018 Water Environment Federation.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Igielski</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kjellerup</LastName>
<ForeName>Birthe V</ForeName>
<Initials>BV</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Allen P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>83556901</GrantID>
<Agency>USEPA</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Water Environ Res</MedlineTA>
<NlmUniqueID>9886167</NlmUniqueID>
<ISSNLinking>1061-4303</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000693" MajorTopicYN="N">Anaerobiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="N">Biofilms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002947" MajorTopicYN="Y" Type="Geographic">Cities</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058440" MajorTopicYN="Y">Denitrification</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014881" MajorTopicYN="N">Water Supply</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">biofilm</Keyword>
<Keyword MajorTopicYN="Y">bioretention</Keyword>
<Keyword MajorTopicYN="Y">denitrification</Keyword>
<Keyword MajorTopicYN="Y">storage</Keyword>
<Keyword MajorTopicYN="Y">stormwater</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30682230</ArticleId>
<ArticleId IdType="doi">10.2175/106143017X15131012188024</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Igielski, Sara" sort="Igielski, Sara" uniqKey="Igielski S" first="Sara" last="Igielski">Sara Igielski</name>
</region>
<name sortKey="Davis, Allen P" sort="Davis, Allen P" uniqKey="Davis A" first="Allen P" last="Davis">Allen P. Davis</name>
<name sortKey="Kjellerup, Birthe V" sort="Kjellerup, Birthe V" uniqKey="Kjellerup B" first="Birthe V" last="Kjellerup">Birthe V. Kjellerup</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000361 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000361 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30682230
   |texte=   Understanding urban stormwater denitrification in bioretention internal water storage zones.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30682230" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020